
Combinatorics in Banach space theory (MIM UW 2014/15)
PROBLEMS (Part 4)

Notation: XGM = the Gowers–Maurey space, XS = the Schlumprecht space;
by ‖·‖GM and ‖·‖S we denote their norms; F = the class of functions considered
in the construction of both of these spaces; (en)∞n=1 = the canonical basis of c00.

PROBLEM 4.1. Assume that a Banach space X admits an asymptotic biorthogonal sys-
tem with constant δ ∈ (0, 12). Show that X is 1

2δ -distortable, and hence if X contains
asymptotic biorthogonal systems with arbitrarily small constants, then X is arbitrarily
distortable.
Hint. It is enough to use only three sets: A1, A2 and A∗1 from the given asymptotic biorthogonal
system (An)∞n=1 ⊂ SX , (A∗n)

∞
n=1 ⊂ BX∗ . Can you reformulate the argument which we used to

prove that Tsirelson’s space T is (2− ε)-distortable, and explain how these sets A1, A2 and A∗1
may look like in this situation?

PROBLEM 4.2. Prove that∥∥∥∥∥∥
n∑
j=1

ej

∥∥∥∥∥∥
S

=
n

log2(n+ 1)
for every n ∈ N.

PROBLEM 4.3. Show that XGM is reflexive.
Hint. Verify that the canonical basis is boundedly complete and shrinking.

PROBLEM 4.4. Show that no Banach space satisfying a lower f -estimate, for some f ∈ F ,
can be renormed in a uniformly convex way.
Hint. Such a space must contain `n1 ’s uniformly.
Remark. In particular, XGM does not admit any uniformly convex renorming (in other words,
is not superreflexive). A construction of a uniformly convex HI space was given in the paper
[V. Ferenczi, A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102
(1997), 199–225].

PROBLEM 4.5. Show that for every Banach space X the following assertions are equ-
ivalent:

(i) X is HI;
(ii) for any infinite-dimensional closed subspaces Y and Z of X, the distance between

the unit spheres of Y and Z is zero;
(iii) for any infinite-dimensional closed subspaces Y and Z of X, and every δ > 0, there

exist vectors y ∈ Y and z ∈ Z such that δ‖y + z‖ > ‖y − z‖;
(iv) for every infinite-dimensional closed subspace Y of X and every set W ⊂ BX∗

which is ε-norming for Y , with some ε > 0 (that is, supϕ∈W |ϕ(y)| > ε‖y‖ for
every y ∈ Y ), the preannihilator ⊥W = {x ∈ X : ϕ(x) = 0 for each ϕ ∈ W} is
finite-dimensional.

PROBLEM 4.6. Let X and Y be Banach spaces. We call a bounded linear operator
T ∈ B(X, Y ) infinitely singular provided that for each ε > 0 there exists an infinite-
dimensional subspace Z of X such that ‖T |Z‖ < ε. Prove that if T is not infinitely
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singular, then the restriction of T to some finite-codimensional subspace of X is bounded
below (an isomorphism onto its range) and, moreover, the complementary subspace can
be taken to be kerT .

PROBLEM 4.7. Let X be a complex Banach space and let T ∈ B(X). We call a number
λ ∈ C infinitely singuar for T if T − λIX is infinitely singular. Assuming X is HI prove
that:

(a) there exists at most one complex number that is infinitely singular for T (hence,
there is exactly one such number unless dimX <∞);

(b) if λ is infinitely singular for T , then T − λIX is strictly singular (i.e., it is not
bounded below on any infinite-dimensional subspace of X).

PROBLEM 4.8. Let X be a complex Banach space and T ∈ B(X). We denote by FT
the set of all complex numbers that are not infinitely singular for T . Prove that if
λ ∈ ∂σ(T ) ∩ FT , then λ is an isolated point of σ(T ).
Remark. This assertion is the key step in proving that FT 6= C whenever X is infinite-
dimensional.

PROBLEM 4.9. Let X be a real HI space and let T ∈ B(X). Let also T̃ be the natural
extension of T to the complexification space XC of X. Prove that either T − λIX is
strictly singular for some λ ∈ R, or T 2 − 2ReλT + |λ|2IX is strictly singular for some
λ ∈ C \ R. Prove also that σ(T̃ ) is invariant under complex conjugation and the set
σ(T̃ ) ∩ {z : Im z > 0} is finite or consists of a convergent sequence with its limit.

Next, explain how these assertions imply that every bounded linear operator on
a real HI space is either strictly singular or Fredholm with index 0.

PROBLEM 4.10. Show that all closed hyperplanes (subspaces of codimension 1) of any
Banach space are mutually isomorphic.

PROBLEM 4.11. Prove that every HI Banach space embeds isomorphically into `∞.
Hint. Exploit the fact that in the dual of any HI space X we have a countable set which separates
points and is, say, 12 -norming for any given separable subspace X . This follows (how?) from the
characterization given in Problem 4.5(iv). Next, use Problems 4.6 and 4.7.

PROBLEM 4.12. Without using any operator-theoretic tools (in particular, without using
the knowledge about the form of operators on an HI space) show that the basic sequences
(en)∞n=1 and (en)∞n=2 are not equivalent in XGM.
Remark. You are supposed to prove this more or less directly from the definition of the norm
‖·‖GM, however, some deep estimates (like the one for the sum a R.I.S. of length N ∈ L) will
be quite indispensable.
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