Combinatorics in Banach space theory (MIM UW 2014/15)
 PROBLEMS (Part 4)

Notation: $X_{\mathrm{GM}}=$ the Gowers-Maurey space, $X_{\mathrm{S}}=$ the Schlumprecht space; by $\|\cdot\|_{\text {Gm }}$ and $\|\cdot\|_{\mathrm{S}}$ we denote their norms; $\mathcal{F}=$ the class of functions considered in the construction of both of these spaces; $\left(e_{n}\right)_{n=1}^{\infty}=$ the canonical basis of c_{00}.

PROBLEM 4.1. Assume that a Banach space X admits an asymptotic biorthogonal system with constant $\delta \in\left(0, \frac{1}{2}\right)$. Show that X is $\frac{1}{2 \delta}$-distortable, and hence if X contains asymptotic biorthogonal systems with arbitrarily small constants, then X is arbitrarily distortable.
Hint. It is enough to use only three sets: A_{1}, A_{2} and A_{1}^{*} from the given asymptotic biorthogonal system $\left(A_{n}\right)_{n=1}^{\infty} \subset S_{X},\left(A_{n}^{*}\right)_{n=1}^{\infty} \subset B_{X^{*}}$. Can you reformulate the argument which we used to prove that Tsirelson's space \mathcal{T} is $(2-\varepsilon)$-distortable, and explain how these sets A_{1}, A_{2} and A_{1}^{*} may look like in this situation?

PROBLEM 4.2. Prove that

$$
\left\|\sum_{j=1}^{n} e_{j}\right\|_{\mathrm{S}}=\frac{n}{\log _{2}(n+1)} \quad \text { for every } n \in \mathbb{N} .
$$

PROBLEM 4.3. Show that $X_{G M}$ is reflexive.
Hint. Verify that the canonical basis is boundedly complete and shrinking.
PROBLEM 4.4. Show that no Banach space satisfying a lower f-estimate, for some $f \in \mathcal{F}$, can be renormed in a uniformly convex way.
Hint. Such a space must contain ℓ_{1}^{n} 's uniformly.
Remark. In particular, $X_{G M}$ does not admit any uniformly convex renorming (in other words, is not superreflexive). A construction of a uniformly convex HI space was given in the paper [V. Ferenczi, A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102 (1997), 199-225].

PROBLEM 4.5. Show that for every Banach space X the following assertions are equivalent:
(i) X is HI ;
(ii) for any infinite-dimensional closed subspaces Y and Z of X, the distance between the unit spheres of Y and Z is zero;
(iii) for any infinite-dimensional closed subspaces Y and Z of X, and every $\delta>0$, there exist vectors $y \in Y$ and $z \in Z$ such that $\delta\|y+z\|>\|y-z\|$;
(iv) for every infinite-dimensional closed subspace Y of X and every set $W \subset B_{X^{*}}$ which is ε-norming for Y, with some $\varepsilon>0$ (that is, $\sup _{\varphi \in W}|\varphi(y)| \geqslant \varepsilon\|y\|$ for every $y \in Y$), the preannihilator ${ }^{\perp} W=\{x \in X: \varphi(x)=0$ for each $\varphi \in W\}$ is finite-dimensional.

PROBLEM 4.6. Let X and Y be Banach spaces. We call a bounded linear operator $T \in \mathscr{B}(X, Y)$ infinitely singular provided that for each $\varepsilon>0$ there exists an infinitedimensional subspace Z of X such that $\left\|\left.T\right|_{Z}\right\|<\varepsilon$. Prove that if T is not infinitely
singular, then the restriction of T to some finite-codimensional subspace of X is bounded below (an isomorphism onto its range) and, moreover, the complementary subspace can be taken to be $\operatorname{ker} T$.

PROBLEM 4.7. Let X be a complex Banach space and let $T \in \mathscr{B}(X)$. We call a number $\lambda \in \mathbb{C}$ infinitely singuar for T if $T-\lambda I_{X}$ is infinitely singular. Assuming X is HI prove that:
(a) there exists at most one complex number that is infinitely singular for T (hence, there is exactly one such number unless $\operatorname{dim} X<\infty$);
(b) if λ is infinitely singular for T, then $T-\lambda I_{X}$ is strictly singular (i.e., it is not bounded below on any infinite-dimensional subspace of X).

PROBLEM 4.8. Let X be a complex Banach space and $T \in \mathscr{B}(X)$. We denote by F_{T} the set of all complex numbers that are not infinitely singular for T. Prove that if $\lambda \in \partial \sigma(T) \cap F_{T}$, then λ is an isolated point of $\sigma(T)$.
Remark. This assertion is the key step in proving that $F_{T} \neq \mathbb{C}$ whenever X is infinitedimensional.

PROBLEM 4.9. Let X be a real HI space and let $T \in \mathscr{B}(X)$. Let also \widetilde{T} be the natural extension of T to the complexification space $X_{\mathbb{C}}$ of X. Prove that either $T-\lambda I_{X}$ is strictly singular for some $\lambda \in \mathbb{R}$, or $T^{2}-2 \operatorname{Re} \lambda T+|\lambda|^{2} I_{X}$ is strictly singular for some $\lambda \in \mathbb{C} \backslash \mathbb{R}$. Prove also that $\sigma(\widetilde{T})$ is invariant under complex conjugation and the set $\sigma(\widetilde{T}) \cap\{z: \operatorname{Im} z \geqslant 0\}$ is finite or consists of a convergent sequence with its limit.

Next, explain how these assertions imply that every bounded linear operator on a real HI space is either strictly singular or Fredholm with index 0 .

PROBLEM 4.10. Show that all closed hyperplanes (subspaces of codimension 1) of any Banach space are mutually isomorphic.

PROBLEM 4.11. Prove that every HI Banach space embeds isomorphically into ℓ_{∞}.
Hint. Exploit the fact that in the dual of any HI space X we have a countable set which separates points and is, say, $\frac{1}{2}$-norming for any given separable subspace X. This follows (how?) from the characterization given in Problem 4.5(iv). Next, use Problems 4.6 and 4.7.

PROBLEM 4.12. Without using any operator-theoretic tools (in particular, without using the knowledge about the form of operators on an HI space) show that the basic sequences $\left(e_{n}\right)_{n=1}^{\infty}$ and $\left(e_{n}\right)_{n=2}^{\infty}$ are not equivalent in X_{GM}.
Remark. You are supposed to prove this more or less directly from the definition of the norm $\|\cdot\|_{G M}$, however, some deep estimates (like the one for the sum a R.I.S. of length $N \in L$) will be quite indispensable.

